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Summary. We present a new method to construct a trivariate T-spline represen-
tation of complex solids for the application of isogeometric analysis. The proposed
technique only demands the surface of the solid as input data. The key of this method
lies in obtaining a volumetric parameterization between the solid and a simple para-
metric domain. To do that, an adaptive tetrahedral mesh of the parametric domain
is isomorphically transformed onto the solid by applying the meccano method. The
control points of the trivariate T-spline are calculated by imposing the interpolation
conditions on points situated both on the inner and on the surface of the solid. The
distribution of the interpolating points is adapted to the singularities of the domain
in order to preserve the features of the surface triangulation.

Key words: Trivariate T-spline, isogeometric analysis, volumetric parame-
terization, mesh optimization and meccano method.

1 Introduction

CAD models usually define only the boundary of a solid, but the application
of isogeometric analysis [2, 3, 10] requires a fully volumetric representation.
An open problem in the context of isogeometric analysis is how to generate a
trivariate spline representation of a solid starting from the CAD description
of its boundary. As it is pointed by Cotrell et al. in [10], ”the most significant
challenge facing isogeometric analysis is developing three-dimensional spline
parameterizations from surfaces”.

There are only a few works addressing this problem, and they all have in
common the use of harmonic functions to establish the volumetric parameter-
ization [20, 22, 23, 24, 31].

For example, Li et al. [20] construct a harmonic volumetric mapping
through a meshless procedure by using a boundary method. The algorithm
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can be applied to any genus data but it is complex and requires placing some
source and collocation points on an offset surface. Optimal results of source
positions are unknown, and in practice they are chosen in a trial-and-error
manner or with the help of human experience. Therefore, the problem is ill-
conditioned and regular system solvers often fail.

Martin et al. [23, 24] present a methodology based on discrete harmonic
functions to parameterize a solid. They solve several Laplace’s equations, first
on the surface and then on the complete 3-D domain with FEM, and use a
Laplacian smoothing to remove irregularities. During the process, new vertices
are inserted in the mesh and retriangulations (in 2-D and 3-D) are applied
in order to introduce the new vertex set in the mesh. The user has to make
an initial choice of two critical points to establish the surface parameteriza-
tion and to fix a seed for generating the skeleton. The parameterization has
degeneracy along the skeleton. The extension to genus greater than zero [24]
requires finding suitable midsurfaces.

We propose a different approach in which the volumetric parameterization
is accomplished by transforming a tetrahedral mesh from the parametric do-
main to the physical domain. This is a special feature of our procedure; we do
not have to give the tetrahedral mesh of the solid as input, as it is a result of
the parameterization process. Another characteristic of our work is that we
use an interpolation scheme to fit a trivariate B-spline to the data, instead
of an approximation, as other authors do. This performs a more accurate
adaptation of the T-spline to the input data.

One of the main drawbacks of NURBS (see for example [27]) is that they
are defined on a parametric space with a tensor product structure, making
the representation of detailed local features inefficient. This problem is solved
by the T-splines, a generalization of NURBS conceived by Sederberg [28] that
enables the local refinement. The T-splines are a set of functions defined on
a T-mesh, a tiling of a rectangular prism in R? allowing T-junctions (see [2]
and [28]).

In this paper we present a new method [13] for constructing volumetric
T-meshes of genus-zero solids whose boundaries are defined by surface trian-
gulations. Our procedure can be summarized in two stages. In the first one,
a volumetric parameterization of the solid is developed by using the meccano
method [7, 8, 25, 26]. Broadly speaking, we can consider that the construction
of a volumetric parameterization is a process in which an adaptive tetrahe-
dral mesh, initially defined in the unitary cube C = [0, 1]3, is deformed until it
achieves the shape of the solid (the physical domain). This deformation only
affects the positions of the nodes, that is, there is not any change in their
connectivities: we say that both meshes are isomorphic. Given that a point is
fully determined by the barycentric coordinates relative to the tetrahedron in
which it is contained, we can define a one-to-one mapping between C and the
solid assuming that the barycentric coordinates are the same in both spaces.

In the second stage, the modeling of the solid by trivariate T-splines is
carried out. The control points of the T-splines are calculated enforcing the
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T-splines to verify the interpolation conditions. Here is where the volumetric
parametrization plays its part, mapping the interpolation points from the
parametric domain, the T-mesh, onto the solid. In our case, the T-mesh is
an octree partition of C with a similar resolution than the tetrahedral mesh
defined in C.

Our technique is simple and it automatically produces a T-spline adapted
to the geometry with a low computational complexity and low user interven-
tion.

In [25], we introduced the meccano method to construct volumetric pa-
rameterizations of solids of genus greater than zero, where the surface param-
eterization is explicitly given. The method is based on the construction of a
rough approximation of the solid joining cuboids, i.e. the meccano. In this
case, the construction of a T-spline representation also demands a T-mesh
adapted to the discretization of the meccano. In this paper, we introduce
a way to undertake this task by an octree subdivision of a cube enclosing a
polycube decomposition of the meccano. Possibly, the most complex question,
from a technical point of view, is the automatic generation of a meccano by
using a specific CAD system and the corresponding surface parameterization.
This last topic is widely discussed in the literature and we could proceed as
in PolyCube-Maps [21, 30, 31].

The paper is organized as follows. In the next Section we describe the
main steps to parameterize a genus-zero solid onto a cube. Some parts of this
Section are taken from our previous works on mesh untangling and smoothing
and the meccano method [7, 8, 11, 13, 25, 26], but they have been adapted
to the requirements of the present work. The representation of the solid by
means of trivariate T-splines is developed in Section 3. In Section 4 we show a
test problem and several applications that highlight the ability of our method
for modeling complex objects. Finally, in Section 5 we present the conclusions
and set out some challenges.

2 Volumetric Parameterization

2.1 Boundary Mapping

The first step to construct a volumetric parameterization of a genus-zero solid
consists of establishing a bijective correspondence between the boundary of the
cube and the solid. To do that, the given surface triangulation of the solid, 7g,
is divided in six patches or connected subtriangulations, Té (i =1,2,...,6),
having the same connectivities as the cube faces. Specifically, if we consider
that each subtriangulation corresponds to a vertex of a graph and two vertices
of the graph are connected if their corresponding subtriangulations have at
least a common edge, then, the graphs corresponding to the solid and the
graph of the cube must be isomorphic (see [8, 26] for details).
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Once Tg is decomposed into six patches, we map each T¢ to the corre-
sponding cube face by using the parameterization of surface triangulations
proposed by M. Floater in [14, 15]. This is a well-known method to transform
a surface triangulation onto a plane triangulation defined in a convex domain,
that is, the cube faces in our case. Many and more recent alternative solutions
have been proposed to solve the surface parameterization (see for example the
surveys [16, 17]), but in most of them the plane triangulation is not defined
in a convex set, which is a restriction for us. Thus, if 7% is the resulting tri-
angulation on the i-th face of the cube, the parameterization IT% : 7% — 7'5%
is a piece-wise linear function that maps a point p inside triangle T € 74
onto a point ¢ belonging to triangle 1% (T) € T with identical barycentric
coordinates.

In order to ensure the compatibility of {/I4}Y_;, the boundary nodes
of {ri}Y_; must coincide on common cube edges. The six transformations
{IT5.}8_, define a global parameterization between 77 = [JO_, 7 and T
given by

HF:TF_>7T9 (1)

The parameterization IIr is used in the following step of the algorithm to
map a new triangulation defined over the boundary of C onto the boundary
of the solid.

2.2 Generation of an Adapted Tetrahedral Mesh of the Cube

Let us consider Cg is a tetrahedral mesh of C resulting after applying several
local bisections of the Kossaczky algorithm [19] to an initial mesh formed by
six tetrahedra (see Fig. 1(a)). Three consecutive global bisections are pre-
sented in Figures 1(b), 1(c) and 1(d). The mesh of Fig. 1(d) contains 8 cubes
similar to the one shown in Fig. 1(a). Therefore, the successive refinement of
this mesh produces similar tetrahedra to those of Figures 1(a), 1(b) and 1(c).

If 7k = OCk is the new triangulation defined on the boundary of C, then
we define a new parameterization

]]KZTK—)'YEIK (2)

where 7§ is the surface triangulation obtained after I1p-mapping the nodes
of 7. The points of 7x are mapped to 7S by preserving their barycentric
coordinates. Note that 7¢ is an approximation of 7g. In order to improve this
approximation we must refine the tetrahedra of Cx in contact with the surface
of the cube in such a way that the distance between 7g and Tg decreases
until reaching a prescribed tolerance . The concept of distance between two
triangulations can be defined and implemented in several ways. In our case,
it is as follows:

Let T be a triangle of 7k, where a, b and ¢ are their vertices and let pi €
{pi}?gl be a Gauss quadrature point of 7', then, the distance, d (T), between
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(a) (b) () (d)

Fig. 1. Refinement of a cube by using Kossaczky’s algorithm: (a) cube subdivision
into six tetrahedra, (b) bisection of all tetrahedra by inserting a new node in the cube
main diagonal, (¢) new nodes in diagonals of cube faces and (d) global refinement
with new nodes in cube edges.

Ik (T) and the underlaying triangulation 7g is defined as the maximum of
the volumes of the tetrahedra formed by ITg(a), ITg(b), IIr(c) and ITp(py).
If we considerer the distance between 74 and Tg as the maximum of all d (T'),
the local refinement stops when d (T') < € for all T € 7. A more accurate
approach based on Hausdorff distance can be found in [4].

Once the adapted tetrahedral mesh Cx has been constructed by using the
proposed method, the nodes of 7 are mapped to the surface of the solid giving
the triangulation 74, which is the final approximation of 7g. Note that inner
nodes of Ck stay in their initial positions, so the current tetrahedral mesh of
the solid will most likely be tangled. The following step plays a crucial roll in
our procedure. We have to relocate the inner nodes in suitable positions such
that this tetrahedral mesh gets untangled and the distortion introduced by
the associated parameterization is as small as possible.

2.3 Relocation of Inner Nodes

Usual techniques to improve the quality of a wvalid mesh, that is, one that
does not have inverted elements, are based upon local smoothing. In short,
these techniques consist of finding the new positions that the mesh nodes
must hold, in such a way that they optimize an objective function. Such a
function is based on a certain measurement of the quality of the local submesh
N (g), formed by the set of tetrahedra connected to the free node g. Usually,
objective functions are appropriate to improve the quality of a valid mesh, but
they do not work properly when there are inverted elements. This is because
they present singularities (barriers) when any tetrahedron of N (¢) changes
the sign of its Jacobian.

Most of what is stated below is taken from [11], where we developed a pro-
cedure for untangling and smoothing meshes simultaneously. For that purpose,
we use a suitable modification of the objective function such that it is regular
all over R®. When a feasible region (subset of R® where ¢ could be placed,
being N (g) a valid submesh) exists, the minima of both the original and the
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modified objective functions are very close, and when this region does not ex-
ist, the minimum of the modified objective function is located in such a way
that it tends to untangle N (g). The latter occurs, for example, when the fixed
boundary of N (q) is tangled. With this approach, we can use any standard
and efficient unconstrained optimization method to find the minimum of the
modified objective function, see for example [1].

If we name 7T to the tetrahedral mesh of the solid once the inner nodes
have been relocated, the corresponding volumetric parameterization is

A point p included in a tetrahedron of Cx is mapped, preserving barycen-
tric coordinates, into a point ¢ belonging to the transformed tetrahedron of

T.

Objective Functions

Several tetrahedron shape measures could be used to construct an objective
function. Nevertheless, those obtained by algebraic operations [18] are spe-
cially indicated for our purpose because they can be computed very efficiently
and they allow us to choose the shape of the tetrahedra to optimize. Our
objective is to relocate the nodes of 7 in positions where not only the mesh
gets untangled, but also the distortion introduced by the parameterization is
minimized.

Let T be a tetrahedral element of 7 whose vertices are given by x; =
(xk,yk,zk)T € R3, k =0,1,2,3 and Ty be the reference tetrahedron with
vertices ug = (0,0,0)%, u; = (1,0,0)7, uy = (0,1,0)” and uz = (0,0, l)T. If
we choose xg as the translation vector, the affine map that takes Tr to T is
x =Au + xg, where A is the Jacobian matrix of the affine map referenced to
node xg, and expressed as A = (X1 — X, X2 — Xg,X3 — X0)-

Let us consider that T7 is our ideal or target tetrahedron whose vertices are
Vo, V1, Vo and v3. If we take vo = (0,0,0)7 the linear map that takes Tr to Ty
is v =Wu, where W = (vy — vg, va — v, V3 — Vg) is its Jacobian matrix. As
the parametric and real meshes are topologically identical, each tetrahedron
of T has its counterpart in Cx. Thus, in order to reduce the distortion in the
volumetric parameterization we will fix the target tetrahedra of N (¢q) as their
counterparts of the local mesh in the parametric space.

The affine map that takes 77 to T is given by x =AW v + x¢, and its
Jacobian matrix is S = AW ~!. Note that this weighted matrix S depends on
the node chosen as reference, so this node must be the same for 7" and T7. We
can use matrix norms, determinant or trace of S to gonstruct algebraic quality

metrics of T'. For example, the mean ratio, @ = %, is an easily computable

algebraic quality metric of T, where o = det (S) and |S| is the Frobenius
norm of S. The maximum value of @ is the unity, and it is reached when
A = pRW, where p is a scalar and R is a rotation matrix. In other words, Q
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is maximum if and only if 7" and 77 are similar. Besides, any flat tetrahedron
has quality measure zero. We can derive an optimization function from this
quality metric. Thus, let x = (z,y, z)T be the position of the free node, and
let Sy, be the weighted Jacobian matrix of the m-th tetrahedron of N (¢). We
define the objective function of x, associated to an m-th tetrahedron as

g |2
o = oL (1
3o,
Then, the corresponding objective function for N (¢) is constructed by using
the p-norm of (n1,72,...,1m0m) as

P

M
[y, (x) = [an’n (X)] ()

where M is the number of tetrahedra in N (q).

Although this optimization function is smooth in those points where N (g)
is a valid submesh, it becomes discontinuous when the volume of any tetra-
hedron of N (gq) goes to zero. It is due to the fact that 7,, approaches infinity
when o,, tends to zero and its numerator is bounded below. In fact, it is possi-
ble to prove that |S,,| reaches its minimum, with strictly positive value, when
q is placed in the geometric center of the fixed face of the m-th tetrahedron.
The positions where ¢ must be located to get N (gq) to be valid, i.e., the feasible

M

region, is the interior of the polyhedral set P defined as P = (| H,,,where

m=1
H,, are the half-spaces defined by o, (x) > 0. This set can occasionally be
empty, for example, when the fixed boundary of N (¢) is tangled. In this situa-
tion, function |Kn|p stops being useful as an optimization function. Moreover,
when the feasible region exists, that is int P # (3, the objective function tends
to infinity as ¢ approaches the boundary of P. Due to these singularities, it is
formed a barrier which avoids reaching the appropriate minimum when using
gradient-based algorithms, and when these start from a free node outside the
feasible region. In other words, with these algorithms we can not optimize a
tangled mesh N (¢) with the above objective function.

Modified Objective Functions

We proposed in [11] a modification in the previous objective function (5), so
that the barrier associated with its singularities will be eliminated and the
new function will be smooth all over R3. An essential requirement is that
the minima of the original and modified functions are nearly identical when
int P # (). Our modification consists of substituting ¢ in (5) by the positive
and increasing function

h(o) = %(g + Vo + 45) ()
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being the parameter § = h(0). Thus, the new objective function here proposed
is given by

|55

M %
()= [Z (13)" <x>] (7)
where

* |Sm|2
= "3, < 8
T = 552 o) (8)

is the modified objective function for the m-th tetrahedron. With this modifi-
cation, we can untangle the mesh and, at the same time, improve its quality.
An implementation of the simultaneous untangling and smoothing procedure
for an equilateral reference tetrahedron is freely available in [12].

Rearrangement of the Inner Nodes

The computational effort to optimize a mesh depends on the initial position
of the nodes. An arrangement of the nodes close to their optimal positions
significantly reduces the number of iterations (and the CPU time) required
by the untangling and smoothing algorithm. Therefore, an interesting idea is
to construct a rough approximation of the solid and to use the correspond-
ing parametrization to relocate interior nodes of more accurate subsequent
approximations.

Taking into account that the grade of refinement attained by the tetrahe-
dral mesh depends on the maximum allowed distance, €, between 7¢ and g,
we will write Cx (), T (¢), Tx(¢) and Tg(¢) to express this dependence.

Let suppose that II., : Cx(g;) = T (e;) is the volumetric parameterization
for a given tolerance ;. We want to find the approximate location of the nodes
of a more accurate mesh T (;41), assuming that €; > £;1. Firstly, the mesh
Ck (g) is locally refined until the distance between 74 (g;) and Tg is below
€;+1- In that moment we have the new mesh of the cube Cx (g;41). Afterward,
their inner nodes are mapped by using the previous parameterization, that
is, we construct the new tetrahedral mesh 7 (¢;41) after Il.,-mapping the
nodes of Cx (g;4+1). Note that T* (;41) has the same topology as T (g;41), but
their nodes are not located at optimal positions. Although 7* (¢;41) could be
tangled, their interior nodes are close to their final positions. Therefore, the
computational effort to optimize the mesh is drastically reduced. The last
step of this iteration consists on relocating the inner nodes of 7* (g;41) in
their optimal position following the mesh smoothing and untangling procedure
above described. This sequence is repeated several times until we achieve the
desired tolerance. In Fig. 2 it is shown a sequence of gradual approximations
to the mesh of a horse. The initial surface triangulation 75 has been obtained
from the Large Geometric Model Archives at Georgia Institute of Technology.
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Fig. 2. Gradual approximations: from a coarse mesh to the final accurate mesh.

3 Representation of the Solid by T-Splines

3.1 Construction of an Adapted Volumetric T-Mesh

We will start this Section with a short introduction on T-splines. A detailed
report about T-splines and their relationship with isogeometric analysis can
be found in [2].

The T-mesh is the control grid of the T-splines. In 3-D it is a division of a
rectangular prism forming a grid in which the T-juntions are allowed. In 2-D T-
junctions are inner vertices of the grid connecting 3 edges. T-junctions in 3-D
are inner vertices shared by one edge in some direction and two edges in other
directions at the same time [29]. T-splines are rational spline functions defined
by local knot vectors, which are inferred from certain points of the T-mesh
known as anchors [2]. The anchors of the odd-degree T-splines are situated
on the vertices of the T-mesh and the anchors of the even-degree T-splines are
located in the center of each prism. We will focus on odd-degree T-splines and,
in particular, on cubic T-splines because they are the ones implemented in the
present work. Cubic T-splines have 5 knots in each parametric direction. Let
us consider the 2-D example of Fig. 3 to understand how the knot vectors are
deduced from the anchor. The parametric coordinates of the anchor t, in Fig.
3(a) are given by (fi, 55)7 then, by examining the intersections of horizontal
and vertical lines (red lines in the Figure) with the edges of the T-mesh, we
deduce that the the knot vector in &' direction is 5 = (£1,£3,&1, 62, 8)
and, the knot vector in & direction is 5§ = (£3,£3,£7,£2,£2). In the case of
Fig. 3(b) only one edge is found when marching horizontally from tg to the
right. In such situations we have two possibilities: repeat knots in order to
form a clamped local knot vector or, as we have implemented in our work,
add phantom knots and form an unclamped one. These phantom knots are
placed following the pattern shown in Fig. 3(b). The construction of knot
vector in 3-D is analogous but we must examine the intersections with T-
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mesh faces encountered when marching in each space direction. The points of
the parametric domain are written as & = (¢*,¢%,€%).

A T-spline is a rational function from the parametric domain to the phys-
ical space given by

S(€) =Y PuR,(¢) (9)

acA

where P, is the control point corresponding to the a-th blending function

- woBo ()
Ra () = > wsBg (&)

BEA

(10)

being wq its weight and B, (€) = N (¢1) N2 (€2) N2 (€3) the product of
univariate B-splines. In these expressions A C Z3 represents the index set
containing every « such that t, is an anchor.

= &
& &
& &
t
& L & L W T |
<= =] <--->
& &l
& &
& &
g & & & &4 & ¢ g & &a & & & & 4
(a) (b)

Fig. 3. Construction of knot vector in a two-dimensional T-mesh. All the knots
associated to the anchor t, lie inside the T-mesh (a). The phantom knot &§ has
been added to construct an unclamped local knot vector (b).

The T-spline S (&) is the sum of rational C? blending functions, so it is
also a C? function. Nevertheless, as the surface of the solid is the union of six
patches obtained by mapping the six faces of the cube, and these faces match
with C° continuity, we only can assure the C° continuity for the surface of
the solid.

Our objective is to get a representation of the solid suitable for isogeo-
metric analysis by means of trivariate T-splines. This representation, V), must
preserve the features and details of the input data, the triangulation 7g. To do
that, we construct an adapted T-mesh by partitioning the parametric domain
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C in cells by using an octree subdivision. The unitary cube C is divided in 8
identical cells and, each cell is, in turn, divided in other 8 cells and so on, until
all the cells of the octree do not contain any node of Ck in their inner. This
last is possible due to the particular characteristics of the Kossaczky subdivi-
sion scheme, in which the edges of Cx are the result of successive division of
the edges of C by two. The octree partition defines a T-mesh, Cr, that is used
to determine the local knot vector and the anchors of the T-splines. Note that
all the nodes of Cx are vertices of Cp, so it is to be hoped that the surface
of V achieves the same resolution than the input triangulation Tg. Another
consequence of the proposed octree subdivision is that the cell faces of Cr
contain no more than one inner T-junction.

3.2 Interpolation

Basically there are two ways of fitting splines to a set points: interpolation and
approximation. We have adopted the first one because it is more appropriate
for reducing all features of the input triangulation. Assuming that the set of
blending functions are linearly independent, we need as many interpolation
points as blending functions.

Recently Buffa et al. [5] have analyzed the linear independence of the bi-
cubic T-spline blending functions corresponding to some particular T-meshes.
They prove linear independence of hierarchical 2-D T-meshes generated as the
refinement of a coarse and uniform T-mesh (this is the 2-D counterpart to our
case). However, the extension of these results to 3-D is not straightforward.

We have chosen the images of the anchors as interpolation points, and all
the weights have been taken equal to 1. Thus, the control points, P, are
obtained by solving the linear system of equations

IT (t5) =S (tp) = > PoRa(tg), Vtg, B A (11)
a€cA
where the images IT (tg) have been calculated through the volumetric param-
eterization (3).
The linear independence has become evident in all the applications con-
sidered until now, as the resolution of (11) is only possible if the blending
functions are linearly independent.

4 Results

4.1 Test Example

We have chosen a 2-D domain as first example in order to dicuss how the
proposed technique works.

At present, there are no quality metrics for isogeometric analysis analogous
to the ones for traditional FEA to help us characterize the impact of the mesh
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on analysis, as it is indicated in [9]. Xu et al. [32, 33] give sufficient conditions
for getting both an injective parameterization for planar splines without self-
intersections and an isoparametric net of good uniformity and orthogonality,
but there are not similar studies for T-splines.

One of the factors to take into account is the variation of the Jacobian in
the elements. Usually, a large variation leads to poor accuracy in the numerical
approximation, so we can explore the suitability of a T-spline for isogeometric
simulations by analyzing the scaled Jacobian in the quadrature points of the
cells. The scaled Jacobian, given by
det (8517 852, Sf%)
8¢ [[11Sez [ [Seol
where Sgi is the derivative of the trivariate T-spline (9) with respect to &%, has
been evaluated in the eight Gaussian quadrature points (see for example [6]) of
each cell in the real domain. For doing that, we set the eight quadrature points
in the hexahedra of the parametric domain and calculate their transformation
to the real domain by applying (9). We can get an idea about whether the
distortion introduced by the spline is or is not too large by plotting the average,
minimum and maximum of the scaled Jacobian in the quadrature points. The
following test model shows a procedure, based on local mesh refinement, to
improve the scaled Jacobian values. The goal is to reach values of the scaled
Jacobian close to one in most parts of the solid.

The test model (see Fig. 4) is a T-spline representation of a deformed
unitary square in which the corner (1, 1) has been displaced toward position
(% — 1—10, % — %0), producing a degenerate cell. This displacement makes the
new optimal position for the central node to become (0.38,0.38). The same
model is approximated by two T-meshes with 9 (Fig. 4(a)) and 14 (Fig. 4(d))
interpolating points. The corresponding T-spline representations are shown in
Figures 4(b) and 4(e), respectively. Note that the representation of Fig. 4(b)
has a wide folded region around the corner in which the Jacobian is negative.
However, this region has been remarkably reduced in the refined version (Fig.
4(e)). This example indicates that, although the refinement of the T-mesh
around the corners (and edges in 3-D) does not completely solve the problem
of degenerate cells, it tends to diminish the region in which the Jacobians
become negative. It can be more clearly seen in Figures 4(c) and 4(f), where
the scaled Jacobian has been represented by a color map. The dark colors
correspond to the regions in which the Jacobian is negative.

Js (51:£2a£3) = (12)

4.2 Solid With Surface of Genus Zero

In Fig. 5 we have shown a tetrahedral and T-spline representation of the
Stanford bunny. Note how similar discretization of the respective parametric
domains give rise to similar grade of detail in the physical domains. It can be
seen how the isoparametric curves are nearly orthogonal in most parts of the
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Fig. 4. Initial T-mesh in the parametric domain (continuous line) and the un-
derlying triangular mesh (dashed line) (a). T-spline of a deformed square with a
reentrant corner (b). Scaled Jacobian representation in the parametric domain (c).
Corresponding representations for a refined version (d), (e) and (f).

solid, which entails low distortion and values of scaled Jacobian close to one.
Nevertheless, the distortion becomes high in some regions of the surface. We
have computed 39 cells out of 9696 in which at least one of the eight Gaussian
quadrature points has a negative Jacobian.

As we have mentioned, the T-spline is enforced to interpolate all the nodes
of the tetrahedral mesh 7 and this mesh is as close as we want to the input
surface Tg. Moreover, the interpolating points are exactly situated on the
input surface. These reasons suggest a good accuracy between the surface of
the T-spline and Tg. In order to estimate the gap between both surfaces we
have analyzed the differences between the volumes enclosed by Ts and the
T-spline, V. The first volume is measured by applying the divergence theorem
and the second one is calculated integrating det (Sgl, Se2, Sgs) in the unitary
cube C with 8 Gaussian quadrature points in each cell. The quadrature points
with negative Jacobians have been rejected from the calculations. The results
for the bunny application are: the volume enclosed by Tg is 754.9; the volume
of T is 750.9 (a difference of 0.5% in relation to Tg) and the volume of V is
757.4 (a difference of 0.3% in relation to 7g).
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Fig. 5. Tetrahedral mesh of the parametric domain Cx (a), T-mesh Cr (b), tetra-

hedral mesh 7 (c) and T-spline representation V (d) of the Stanford bunny. Two
transversal sections of V (e) and (f).

Guided by the results of the test example of Fig. 4, we are interested
in knowing the effect of refining the cells with worst quality. To do that, we
develop an iterative procedure in which the scaled Jacobian is evaluated in the
center of each cell and, if it is negative, we store the point in a list of vertices
to be included in the T-mesh of the subsequent iteration. If the impact of
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such refinement is similar to the one of the test example, it should be hoped
a reduction of the region in which the Jacobian had negative values. In fact,
the number of cells with negative scaled Jacobian evaluated in their centers
have been: 5 in the first iteration, 4 in the second, 2 in the third and 0 in the
fourth. Moreover, only 6% of the cells have a scaled Jacobian less than 0.5.
We remark that in this application we have obtained positive Jacobians
in all the centers of the cells of Cy. Therefore, the most distorted cells are
susceptible of being integrated with at least one Gaussian quadrature point.
Obviously, a better numerical approximation is possible in most of the cells.

4.3 Solid With Surface of Genus Greater Than Zero

‘We now consider the extension of the proposed isogeometric modeling to solids
with surface of genus greater than zero. In this case, the volumetric parameter-
ization of the solid is constructed by using the meccano method [7, 8, 25, 26].
The method is based on the composition of a meccano, joining cuboid pieces
in order to get a rough approximation of the solid. Afterward, we use a pa-
rameterization to map the boundary of the solid to the meccano faces. To
obtain a T-mesh adapted to the discretization of the meccano, we apply an
octree subdivision of a cube enclosing the initial polycube decomposition of
the meccano. This subdivision produces vertices both inside and outside the
meccano, but only the inner vertices must be considered as anchors. The ex-
ternal vertices will be used to complete the unclamped knot vectors. As an
example, we present the modeling of a solid with a genus-one surface that is
explicitly given. The main stages of the process are shown in Fig. 6. In this
case, the meccano is formed by four cuboids. We remark that we have also
obtained positive Jacobians in all the centers of the cells of the T-mesh.

5 Conclusions and Challenges

Focused on the application of isogeometric analysis, this work is a new ap-
proach to the automatic generation of trivariate T-splines representation of
solids. Our procedure has been presented with detail for genus-zero solids and
has been introduced for genus greater than zero. The key lies on having a vol-
umetric parameterization of the solid by using the meccano method [25, 26].
In this paper we have considered a genus-one surface parameterization explic-
itly given, but we think that this handicap could be overcome by applying a
technique similar to PolyCube-Maps [21, 30, 31].

Furthermore, the input data of the solid boundary is generally described by
CAD. Such information could be used to map the points lying on the surface
of the parametric mesh to the surface of the solid, making unnecessary the
stage of surface parameterization in the meccano method.

In general, the distortion introduced by the proposed volumetric parame-
terization is low, but the existence of critical points where the Jacobian of the
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T-spline may become negative constitutes an inconvenience for isogeometric
simulations. Just as we have shown in Section 4, the selective refinement of
the most degenerate cells palliates the problem.
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Fig. 6. Main stages of the isogeometric modeling of a solid with a surface of genus
one: (a) Coarse tetrahedral mesh of the meccano, (b) refined tetrahedral mesh of the
meccano, (¢) T-mesh of the meccano, (d) tangled tetrahedral mesh after the mapping
on solid surface, (e) resulting tetrahedral mesh after inner node relocation and mesh
optimization, (f) T-spline representation of the solid and (g) two transversal sections.
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